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Abstract
We have investigated the characteristics of stimulated electromagnetic shock
radiation (SESR) by using classical, second-order, relativistic calculations. We
have derived very compact analytical expressions specifying the electric field
components of SESR, which are quite suitable for numerical estimation. We
have used, here, a more exact method for solving Lorentz force equations.
We have evaluated all the frequency integrals by explicitly imposing the
conditions contained in them. Hence we have estimated the SESR effect in
different possible physical situations. We have studied, in detail, the important
characteristics of SESR, such as frequency up-shift, amplification, energy
output and tunability. We have calculated the numerical values of its electric
field components and also its output power and frequency. We have shown that
very near to the threshold of superphase motion SESR contains two components
of frequency 2� and 4�, which we have named, respectively, SESR-2�

and SESR-4�. The SESR-2� is found to be stronger than the SESR-4�,
with power output ∼106 times that of SESR-4�. Each of these components
is seen to be monochromatic, highly up-shifted in frequency as compared
to the incident laser-frequency ω0 (103 < �/ω0 < 109), highly directional,
enormously amplified giving power amplification ∼(1027 to 1044) as compared
to the Cherenkov radiation (that may be emitted in the absence of the laser, but
under the same other conditions), coherent electromagnetic radiation which is
also tunable. Because of all these interesting characteristics, SESR may be
of use for the generation of high frequency coherent electromagnetic radiation
such as x-ray or gamma-ray.

PACS numbers: 41.60.−m, 41.20.−q, 41.60.Cr, 41.60.Bq, 52.59.−f, 41.75.−i
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1. Introduction

The head-on collision of a relativistic electron beam, possessing superluminal motion, with
a plane electromagnetic wave (laser), gives what is called ‘stimulated electromagnetic shock
radiation’, which we abbreviate as ‘SESR’. The dielectric, characterized by the dielectric
constant ε which is greater than 1, supports the superluminal or superphase motion of the
charge by slowing down the electromagnetic waves and therefore allowing the charge to travel
faster than the waves passing through it (superlight charge). When a charged particle moves
with a constant superluminal speed in a medium, it emits Cherenkov radiation [1] (CR) which
is quite well known. It is given in the form of a cone because the radiated wavelets emitted
by the medium under the action of the field of the particle at different points on its path
interfere constructively at the Mach angle. It has been extensively studied and also used [2, 3]
in high energy physics laboratories. When such a superlight-charged particle is additionally
kept under the influence of an external electromagnetic wave, its motion gets modulated
and therefore it emits a different radiation called ‘stimulated Cherenkov radiation’ [4]. The
‘Cherenkov lasers’ [5, 6], the currently developing devices (in which an electromagnetic
wave propagates at a finite angle with an electron beam) for obtaining coherent radiation, are
based on the stimulated Cherenkov radiation. The SESR, the subject of the present paper,
may be considered as a special case of stimulated Cherenkov radiation in which a particular
geometry of the head-on collision of a superlight electron beam with an electromagnetic wave is
considered.

The SESR-effect involves occurrence of two phenomena. The first phenomenon is the
Doppler shift in frequency of the radiation scattered (the Compton backscattering) from a
superlight relativistic electron moving in a dielectric, and the second phenomenon is the
formation of a shock by a material body moving at a speed greater than that of the waves it
produces in the medium. So, SESR is expected to occur when the Doppler shift in frequency
of the radiation scattered in a medium occurs with the Cherenkov radiation condition satisfied
giving intense radiation in the form of a shock front, with frequencies shifted markedly from
that of the incident wave. In our earlier work [7], we derived analytical results, suitable
for estimation of the SESR effect by using classical, second-order, relativistic calculations.
The results showed many interesting characteristics of SESR, such as high directionality,
enormously large frequency up-shift and also amplification. These characteristics seem to
be very useful for the generation of high frequency coherent electromagnetic radiation in a
frequency region in which good coherent sources, at present, are not available. Considering its
potential use, in the present paper, we study in detail these important characteristics. For that
purpose we introduce two changes in the earlier work [7]. Firstly we use a more exact method
to solve Lorentz force equations. Secondly, we explicitly impose the conditions implied there
on variables of integration while performing the integrations and derive more exact integrated
analytical results.

We focus our attention on the most sensitive, nonlinear region of an interaction of the
electron with the wave, which is just above but very much in the vicinity of the threshold
of superphase motion. Our earlier work [7] has shown a strong SESR effect in this region.
However, many aspects of the effect based on higher order calculations yet remain to be
studied, such as characteristics of SESR, comparison of SESR effect with other known
processes, investigating the question of energy conservation and identifying the source of
SESR energy for a better physical understanding of the SESR effect, a feasibility study of
its applications such as obtaining high frequency coherent radiation, and its comparison with
other existing, high frequency, coherent radiation sources. At present we conduct an in-depth
study of different characteristics of SESR.
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Firstly we present more exact analytical results and also their comparison with earlier
ones. We use here a more accurate method for solving the Lorentz force equation. The
method which we used earlier was based [8] on solving the Lorentz force equation in a
linear approximation in terms of a small parameter µ. In that method, the solutions for the
electron’s velocity components were sought in a particular form containing µ. The method
was expected to be effectively the same as going to the electron’s restframe. But strictly
speaking we did not actually transform to the inertial frame moving with the electron. We
point out that solving the Lorentz force equations forms the first important step in performing
further second-order classical relativistic calculations in the context of SESR. The above
method which we used earlier, though somewhat approximate in its first step, was found to
be quite successful in tackling rather a complex physical situation of SESR. It also showed
very interesting results. Therefore, in the present paper we use a more exact method to solve
the Lorentz force equation. We transform all the quantities appearing in the equations to
the inertial frame moving with the linear uniform velocity of the electron by using Lorentz
transformation equations. We then solve the Lorentz force equation in the electron’s rest frame
by using a method of linear approximation. The small parameter µ used for its linearization
is defined in a peculiar way so that it also judges how much above the threshold of superphase
motion the electron is passed through the medium. In order to use SESR for the generation
of high frequency coherent radiation, in the present paper we have done a detailed study of
the important characteristics of SESR such as output frequency, amplification, directionality,
output power and tunability. The analysis is based on the present refined second-order
calculations. We also have estimated the values of the frequencies and power obtained
from SESR.

Here we want to note one important fact about the experimental work on SESR. There
was only one experiment done at the Naval Research Laboratory at Washington, DC [9],
way back in 1982, to measure SESR, and it gave a negative result. This may be a reason
why there was a decline in further work on SESR. But we want to point out that the
theoretical results on which the experiment was designed at that time had the following
limitations. Firstly the theories were restricted only to first-order calculations [10–20],
which were not enough to reveal all the properties of SESR. Secondly their treatments
omitted the most sensitive region of the interaction (which is very near the threshold
of superphase motion) in which our more exact, second-order calculations show a very
strong effect. Moreover, the results of our earlier work [7] can explain the negative
result of the SESR experiment. Our study regarding the variation of the SESR effect
with external parameters is quite useful in selecting suitable values for the experimental
verification of SESR. Therefore, with new insight provided by the higher order calculations
[7], supplemented by our present study, we expect the SESR effect to be experimentally
observable. Thus there is a need to perform the experiment to confirm the existence of SESR.
Once the experimental verification of SESR is done, it may open up many new avenues of
application.

In this paper we present our work in the following four sections. In section 2 we
outline the major steps involved in the calculations, and also discuss the implications of
the main results of the work. They are given by equations (24), (25) and (26). They
specify the electric field components of SESR, in the most compact forms, and they are
quite suitable for the numerical estimation of SESR. In section 3 we consider, in detail,
the important characteristics of SESR such as its frequency, field strength, power and
tunability as quantified by the present results. In section 4 we present the conclusions of our
work.
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2. Calculations

We consider a relativistic electron possessing a superluminal speed v0 (exceeding the phase
velocity of light), along the positive z-axis, in an infinite medium of unit magnetic permeability.
The electric field (Ei) and the magnetic induction (Bi) of the plane electromagnetic wave
(laser) incident in the opposite direction (head-on collision) is

Ei(X, t) = ŷE0 sin(ω0t + k0z) (1)

Bi(X, t) = n0k̂0 × Ei (2)

where k0c = ω0n0, c is the speed of light in vacuum and n0 = √
µmε is the index of refraction

at the incident laser frequency. We consider the case of a non-magnetic (µm = 1), non-
dispersive medium so that the dielectric constant ε can be taken as a constant and take v0 > c

n0

or εβ2
0 > 1, where β0 = v0

c
.

The motion of the electron of charge −e moving in a dielectric is governed by the incident
electromagnetic wave through the Lorentz force [21] given by

F =
(
−eDi − e

c
v̄ × Bi

)
= d

dt
(γm0v̄) (3)

where displacement vector Di = εEi , v̄ is the velocity of the electron, γ = (1 − β2)−1/2 and
β = v/c.

The interaction of the electron (possessing superluminal motion) with the counter-
propagating electromagnetic wave takes place in a medium whose presence is included in
the effect through ε, its dielectric constant. The Lorentz force given by equation (3) specifies
the electron’s motion as governed by an incident laser.

The presence of the wave imparts an additional oscillatory motion which is superimposed
on the uniform rectilinear motion of the electron. The electric field of the wave, Ei , induces
transverse oscillations while the magnetic field, Bi , is responsible for longitudinal oscillations
(w.r.t. ẑ). For our situation in which v0 is perpendicular to Bi , the magnetic field can deflect the
electron only when the electric field displaces it first to give a nonzero component of (v̄ × Bi)
force w.r.t. the frame attached to the electron moving with uniform velocity v0 . Therefore,
inducing longitudinal oscillations is a second-order effect and inducing transverse oscillations
is a first-order effect (in the electric field). Here, we assume the parameters of the incident
laser to be such that the induced velocity components of the electron’s motion are very small
compared to the speed with which the electron is incident, and so we can neglect higher order
terms. The frequency of these induced oscillations given by the relativistic Doppler effect [21]
is

�′
0 = ω0(1 + β0n0)γ0 (4)

where γ0 = (
1 − β2

0

)−1/2
.

Thus an oscillatory motion is superimposed on the uniform rectilinear motion of the
charge. So, in addition to the uniform velocity v0, the charge also possesses acceleration and
hence it radiates due to its accelerated motion. The radiation fields (and not just the time-
dependent Coulomb field as in the case of CR) of the accelerated charge induce time-dependent
polarization in the medium (at a higher frequency). The rapidly changing induced medium
polarization gives rise to electromagnetic radiation that is quite different from the normal CR.
It is what is called stimulated electromagnetic shock radiation (SESR). The radiation emitted
(SESR) can be anticipated to possess frequency up-shift because of the relativistic Doppler
effect combined with the Compton backscattering, for the geometry under consideration. The
presence of a dielectric medium with ε > 1 not only slows down the electromagnetic waves
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passing through it and allows the electron to possess a speed greater than that of the incident
and the emitted electromagnetic waves, but also gives out radiation that is confined to a conical
region behind it.

Thus, the interaction of the electron possessing superluminal motion with counter-
propagating electromagnetic wave gives out SESR. The time varying motion of the electron
(under the influence of the incident laser) determines the charge and current densities, whose
solutions actually determine the fields of the emitted radiation. That is exactly what we do,
here, to get SESR.

Firstly we solve the Lorentz force equation (3) in an inertial frame moving with velocity
v0 (same as the electron’s initial velocity), to get the instantaneous velocity of the charge.
Using equations (1) and (2), we write the resulting equation (3) componentwise as

m0
dv′

x

dt ′
= 0 (5)

m0
dv′

y

dt ′
= −e

[
εE′

i +
n0

c
E′

iv
′
z

]
(6)

m0
dv′

z

dt ′
= eE′

iv
′
y

n0

c
(7)

where a ‘prime’ denotes the corresponding quantities that are expressed w.r.t. the moving
frame. We note here that in equations (5)–(7) Bi is not seen because it is expressed in terms
of Ei using equation (2). We linearize equations (5)–(7) w.r.t. a small parameter, µ, where
v0 = c

n0
(1 + µ) and µ � 1 are assumed. This means that the electron is incident with speed

slightly above the threshold of superphase motion. This assumption also implies that we are
considering the most sensitive nonlinear region of the interaction, which is just above, but
very much in the vicinity of the threshold of superphase motion. This region of the interaction
is excluded from consideration by all the earlier workers [10–20, 22], and that is one of the
reasons why they did not get such a strong effect as we have obtained.

We seek the solution of equations (5)–(7), in the following form:

v′
x = 0 v′

y = c

n0
uyµ v′

z = c

n0
uzµ (8)

where µ � 1, and the initial conditions are at t ′ = 0, v′
z|t ′=0 = 0 and v′

y |t ′=0 = 0.
Substituting velocity components using equation (8) in equations (5)–(7) and keeping only

the dominant first-order terms in µ, integrating w.r.t. t ′ and using the above initial conditions,
we get

v′
x = 0 v′

y = ∓ c

n0
D′ sin ω′

0t
′ (9)

v′
z = −cF ′D′

n04ω′
0

(cos 2ω′
0t

′ + 1) (10)

where

D′ = en0E
′
iε

m0cω
′
0

and F ′ = D′ω′
0

ε
.

Transforming back to the laboratory frame by using the appropriate Lorentz transformation
equations [21], we get the components of the electron’s velocity v̄(t) as

vx(t) = 0 vy(t) = ∓b0 sin �0t vz(t) = v′
0 − a0 cos 2�0t (11)

where

b0 = cεβi

γ0
a0 = εn0c

4
β2

i βi = eE0

m0ω0c

�0 = ω0(1 + β0n0) and v′
0 = v0 − a0.



6842 A A Risbud

Integrating equation (11) w.r.t. t, we get the components of the electron’s position, R̄(t) as

x(t) = 0 y(t) = ±b cos �0t z(t) = v′
0t − a sin 2�0t (12)

where b = b0/�0 and a = a0/2�0.
We use the Fourier transform method to solve Maxwell’s equations that are governed by

the source terms, namely the appropriate charge density ρ(r̄, t) and the current density j̄ (r̄, t)

given by

ρ(r̄, t) = −eδ(r̄ − R̄(t)) (13)

j̄ (r̄, t) = v̄(t)ρ(r̄, t). (14)

We substitute, respectively, for the electron’s velocity and position from equations (11) and
(12) in equations (13) and (14); and perform calculations correct up to the second-order terms
in βi (for details see [7]), to get the following expressions for the electric field components of
SESR.

Ez(r̄, t) = e

2c2

∫ +∞

−∞
ω dω eiωt

{
H

(2)
0 (ρA)

(
1 − c2k

εωv′
0

)(
1 − b2A2

4

)
e−ikz

−H
(2)
0 (ρA±)

[(
1 − c2k±

εωv′
0

) (
b2A2

±
8

± ak±
2

)
− 2a�0

v′
0

]
e−ik±z

+
b

2
e∓iπ/2H

(2)
0 (ρA′

±)

[
A′

±

(
1 − c2k′

±
εωv′

0

)]
e−ik′

±z

}
(15)

Eρ(r̄, t) = e

2εv′
0

∫ +∞

−∞
dω eiωt

{
−AH

(2)
0 (ρA)

(
1 − b2A2

4

)
e−ikz

+
A±
2v′

0

H
(2)
0 (ρA±)

[
b2A2

±
4

± ak± ∓ b2ε�0

2c2
ω

]
e−ik±z

+
bε

2
e∓iπ/2H

(2)
0 (ρA′

±)

[
1

ε
± �0

c2
ω

]
e−ik′

±z

}
(16)

Eφ(r̄, t) = πe

2εv′
0

∫ +∞

−∞
dω eiωt

{
H

(2)
0 (ρA±)

[
b2A2

±
8

± ak±
4

]
e−ik±z

+
b

2
e∓iπ/2A′

±H
(2)
0 (ρA′

±) e−ik′
±z

}
(17)

where ± terms with ± suffixes are written together for convenience, but are to be read as
separate terms, H

(2)
0 (ρA) is the Hankel function of second kind, and the position vector r̄ is

expressed in cylindrical coordinates as r̄(ρ, φ′, z),

a = e2E2
0n

3
0

16m2
0ω

3
0c

b = eE0n
2
0

2m0ω
2
0γ0

k = ω

v′
0

k± = ω ± 4�0

v′
0

k′
± = ω ± 2�0

v′
0

v′
0 = v0 − 2a�0 A2 = εω2

c2
− k2 A2

± = εω2

c2
− k2

± A′2
± = εω2

c2
− k′2

±

Re A > 0 Re A± > 0 and Re A′
± > 0.

In equations (15)–(17) the terms which contain a factor b specify the first-order effect, and
they show the shift of frequency by a factor ±2�0. We called the effect specified by the
first-order terms SESR-2�. The terms appearing in the above equations that contain factors



Stimulated electromagnetic shock radiation characteristics using classical second-order calculations 6843

a and b2 correspond to the second-order effect. They show a frequency shift by a factor
±4�0. We have named them SESR-4�. The terms having no shift in frequency are identified
as representing the normal CR but with amplitude modified because of the presence of the
electromagnetic wave. We have called them CR-like SESR.

Here we point out that the parameters a and b that appeared in our earlier paper [7] were
found to be smaller, in comparison with their values specified above, by factors ∼1

/(
16γ 3

0

)
and ∼1

/(
4γ 2

0

)
, respectively. The reason is that earlier we used a different approach to the

problem, in which we evaluated the electron’s instantaneous velocity in the laboratory frame of
reference; while in the present work we have used the electron’s rest frame for our calculations.
We also point out that the above inequalities were not written explicitly in the earlier paper
[7], though they were assumed to be satisfied there.

We further note that the above relations following equations (15)–(17), relating k, k±, k′
±

with ω, can be put in a general form as given below:

ω = kv′
0 + 2s�0 (18)

where s = 0,±1,±2.
Equation (18) is nothing but the resonance condition specifying the frequencies of the

emitted radiation (SESR). It reduces to the condition for the appearance of the Cherenkov wave
[23] for s = 0, when the incident laser is weak enough to satisfy the condition 2a�0/v0 � 1.

For s �= 0, by substituting k = ωn0/c in equation (18) we can express the above resonance
condition as

ω = 2s�0

1 − β0n0 + 2a�0n0
c

. (19)

For s = +1 and +2, equation (19) corresponds to the conditions for the appearance of the
normal Doppler frequencies for which the restriction β0n0 < 1 is applicable; while for
s = −1 and −2, it gives the emission of anomalous Doppler [23, 24] frequencies for which the
condition for superphase motion β0n0 > 1 needs to be satisfied. In both cases other parameters
are such that they satisfy the condition 2a�0n0

c
� 1.

Thus, for s = −1 and −2, equation (19) specifies the frequencies for the appearance of
SESR-2� and SESR-4�, respectively. The resonance condition given by equation (19) clearly
shows the additional (w.r.t. �0) frequency up-shift ∼1/|1 − β0n0|, which in our case is very
large, since we are considering the situation in which (β0n0 − 1) = µ � 1. This is exactly
the frequency up-shift identified by us in the earlier paper [7] from the integrated expressions
of equations (15)–(17). It was specified by the phase factors appearing in equations (35)–(37)
of our earlier work and pointed out on page 7 of the earlier work [7]. Getting such a large
frequency up-shift is a very important property of SESR, which may be quite useful in practice.
We consider it in detail later in section 3.

To get expressions that are more suitable for numerical estimation of SESR fields, we
integrate equations (15)–(17). For that we take the asymptotic form of Hankel functions
and use the stationary phase method. We note that the conditions, namely Re A± > 0 and
Re A′

± > 0 appearing in the equations (15)–(17), contain the dependence of ω. But earlier
[7] they were not imposed while calculating the ω integrals. The imposition of the above
conditions leads to some changes in the integrated expressions which we present below.

To perform the integrations w.r.t. ω, we first rewrite equations (15)–(17) showing their ω

dependence explicitly. We use the following approximation formula given by the method of
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stationary phase [7],∫ ω2

ω1

dω 
(ω) eif (ω) =
√

2π
(ω′
0)√|f ′′(ω′

0)|
exp

(
if (ω′

0) ± i
π

4

)
(20)

where ω′
0 represents the root of the equation,

f ′(ω′
0) = df

dω

∣∣∣∣
ω=ω′

0

= 0 (21)

which lies within the range of integration and where the upper or lower sign is to be taken in
the exponential as f ′′(ω′

0) is positive or negative.
We identify f (ω) for the different ω integrals contained in equations (15)–(17) and use

them to solve equation (21), under the conditions Re A± > 0 and Re A′
± > 0, and get the

following roots:

ω′
0 = b1 + �

2a1
for Re A+ > 0 (22)

ω′′
0 = −b1 + �

2a1
for Re A− > 0 (23)

where

� =
√

b2
1 + 4a1d1 d1 = 4c1t

′2 + b2
1ρ

2

4(t ′2 − ρ2a1)
a1 = εβ ′2

0 − 1

v′2
0

b1 = 8�0

v′2
0

c1 = 16�2
0

v′2
0

.

The roots of equation (21) under the condition Re A′
± > 0 can be written by replacing b1

by b1
2 and c1 by c1

4 in equations (22) and (23). Hence using equations (20), (22) and (23),
we evaluated all the integrals that are contained in equations (15)–(17) and obtained the final
result as given below

Ez(r̄, t) = −e

2c2

{
α9

1√
ρ(t ′ − ρ

√
a1)3/2

+
η1

ρ
exp

(
−i

4�0ρη1

v′
0

√
µ′

)

×α11 sin

(
4�0t

′η2

εβ ′2
0 − 1

− 4�0z

v′
0

)
+

η1(
t ′2
a1

− ρ2
)1/2 exp

(
−i

2�0ρ

v′
0

√
µ′ η1

)

×α13 cos

(
2�0t

′η2

εβ ′2
0 − 1

− 4�0z

v′
0

)}
(24)

Eρ(r̄, t) = e

2c2

{
α14

1√
ρ(t ′ − ρ

√
a1)3/2

+
η1(

t ′2
a1

− ρ2
)1/2 exp

(
−i

4�0ρ

v′
0

√
µ′ η1

)

×α16 sin

(
4�0t

′η2

εβ ′2
0 − 1

− 4�0z

v′
0

)
+

η1

ρ
exp

(
−i

2�0ρ

v′
0

√
µ′ η1

)

×α18 cos

(
2�0t

′η2

εβ ′2
0 − 1

− 2�0z

v′
0

)}
(25)

Eφ(r̄, t) = e

2c2

{
η1

ρ
exp

(
−i

4�0ρ

v′
0

√
µ′ η1

)
α20 e−iπ/2 cos

(
4�0t

′η2

εβ ′2
0 − 1

− 4�0z

v′
0

)

+
η1(

t ′2
a1

− ρ2
)1/2 exp

(
−i

2�0ρ

v′
0

√
µ′ η1

)
α22 eiπ/2 sin

(
2�0t

′η2

εβ ′2
0 − 1

− 2�0z

v′
0

)}

(26)
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where

ρ <
t ′√
a1

η1 = ρ(
t ′2
a1

− ρ2
)1/2 η2 = 1 ± β ′

0t
′√ε

√
a1

(
t ′2
a1

− ρ2
)1/2 t ′ = t − z

v′
0

α9 = µ′

4(a1)1/4
µ′ = 1 − 1

εβ ′2
0

α11 = 2b1α3

a
3/2
1

α3 =
(

b2b1�0

2εβ ′2
0

− 4a�0

v′
0εβ

′2
0

− b2c1µ
′

8

)

α13 = 2α8

(
b2

1

16a1
+

c1

4

)1/2

α8 = 8b�0

εβ ′2
0
√

a1
α14 = ca

1/4
1

4εβ ′
0

α16 = 64�2
0|α4|√

εβ ′
0a

2
1v

′4
0

α20 = 4πv′
0|α7|

εβ ′2
0
√

a1
α4 =

(
a

v′
0

− b2b1

4
− b2ε�0

2c2

)
α18 = 4b1b�0

v′
0a

3/2
1

α7 =
(

a�0

v′
0

− b2c1

8

)

and

α22 = πbv′
0

εβ ′2
0
√

a1

(
b2

1

16a1
+

c1

4

)1/2

.

The most compact, integrated expressions given by equations (24)–(26) specify the
components of the SESR fields. They contain all the characteristics of SESR. The first terms
of equations (24) and (25) containing the factors α9 and α14 represent the field components of
CR-like SESR. In the absence of the laser (which implies a = 0 = b) they reduce exactly to
the field components of normal CR [25]. The second terms of equations (24), (25) and the
first term of equation (26), which contain in phase a factor of 4�0, represent SESR-4�. The
third terms appearing in equations (24) and (25); and the second term of equation (26) which
contain a factor of 2�0 in phase give SESR-2� contributions.

Equations (24)–(26) given above are simpler than equations (35)–(37) of the earlier results
[7] because the terms containing the factors, namely α10, α15, α17 and α21, are found not to be
contributing to the final result here. This is due to the imposition of the conditions, namely
Re A > 0, Re A± > 0 and Re A′

± > 0.
As compared to the earlier factors [7], in the present work the coefficients α13 and α18

show small multiplying factors (namely 4 and 16, respectively), but the coefficients α20, α22

and α16 are seen to have large multiplying factors (namely 16γ 2
0 v′

0, 2γ0v
′
0 and 64γ0

/(
cβ ′5

0
√

a1
)
,

respectively). All SESR components show an additional multiplying factor η1. The effect of
these modifications will be reflected in the SESR-field values which we shall show later in
section 3.

We note the presence of a factor i = √−1 in the exponentials of equations (24)–(26). It
results in the propagation of the field components (and not growth) along the ρ-direction. In
our earlier work [7], exponential growth along ρ appeared because of not explicitly imposing
the conditions (which were contained in their equations (B6) and (B7), in which (B5) was
used), namely Re A± > 0 and Re A′

± > 0, while integrating w.r.t. ω. Equations (24)–(26)
show additional factors in phase, namely η1 and η2. Their contribution is judged by noting
that ρ = t ′/

√
a1 represents the CR-cone, and so the condition ρ < t ′/

√
a1 confines SESR to

the region inside the CR-cone; and that their maximum values can be expressed in terms of

the CR-cone angle, θc, as η1 ∼ tan θc =
√

εβ ′2
0 − 1, η2 ∼ (±εβ ′2

0 + 1
)
. Therefore, we find

that the changes in phase factors due to the appearance of η1 and η2 are quite small.
These changes in phase get reflected in the propagation vectors of SESR-2� (i.e. k̄2�)

and SESR-4� (i.e. k̄4�). The ρ and the z components of k̄2� and k̄4� can be identified from
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the coefficients of ρ and z, which appear in the phase factor, respectively, of SESR-2� terms
and SESR-4� terms given by equations (24)–(26). With respect to ẑ, for both SESR-2� and
SESR-4�, they can be seen to satisfy the following relation:

θ = tan−1

(
kρ

kz

)
∼ tan−1

(
1 − 1

β0n0

)
→ 0 (27)

as β0n0 − 1 = µ � 1.
Equation (27) shows that both SESR-2� and SESR-4� radiation are emitted in the

forward direction making a very small angle w.r.t ẑ. The angle of their emission θ reduces as
the threshold of superphase motion is approached from inside the CR cone by reducing the
electron velocity (therefore energy) but remaining in the region of the superluminal motion.

The coefficient of time t in phase can be identified as the frequency of the emitted modes
of the radiation. For SESR-4� and SESR-2� they are given, respectively, as

4�0η2

εβ ′2
0 − 1

and
2�0η2

εβ ′2
0 − 1

.

Substituting for η2, they give the following four possible frequency components:

2�0
(
1 + εβ ′2

0

)
n0β

′
0 − 1

−2�0
�0

(
1 + εβ ′2

0

)
n0β

′
0 − 1

−�0.

The �0 and 2�0 components can be identified, respectively, as the Doppler-shifted frequency
component and its first harmonic both propagating along the −ẑ direction. As εβ ′2

0 ∼ 1, β ′
0 ∼

β0, the remaining two components with frequencies ∼ 2�0
B0n0−1 and ∼ 4�0

β0n0−1 are, respectively,
the enormously up-shifted (since the factor in the denominators, β0n0−1 = µ � 1) frequency
components due to SESR-2� and SESR-4� which propagate along the +ẑ direction.

In our earlier work [7], the ρ-dependence of the SESR-field components was kept aside
while calculating the numerical estimates of SESR fields. Here we include it through the
factor η1. We calculate Poynting’s vector to find the radiated power through SESR. This is
what is shown in the next section 3.

3. Characteristics

In this section we consider, in detail, the important characteristics of SESR, such as its
frequency, field strength and power as specified by the results of the present calculations. Its
numerical estimation is important since it gives a clear understanding of the effect of SESR.

3.1. Frequency output

Firstly we consider the frequency emitted by the SESR effect. The output frequencies from
SESR-2� and SESR-4� are given by equation (19) with s = −1 and s = −2, respectively.
Using 2a�0n0

c
� 1, which is valid in our case, equation (19) gives the values of the frequencies

of SESR-2� and SESR-4�, respectively, as 2� and 4�, where � = �0/(β0n0 − 1). These
are exactly the frequencies identified and shown by the coefficients of t in the phase factors of
our final results given by equations (24)–(26). They show that the SESR frequency depends
upon the laser frequency (ω0), electron speed (β0) and the refractive index of the material (n0)

which supports the superluminal motion. Their choice is very important because the up-shift
from the incident laser frequency is mainly decided by the factor (β0n0 −1)−1. For the electron
to possess superphase motion the condition β0n0 > ∼1 needs to be satisfied. So the electron
energy is to be chosen such that it is above the threshold for a given n0. Thus the frequency
up-shift depends upon how much above from the threshold value the electron is made to move.
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(a)

(c)

(b)

Figure 1. The ranges of refractive index-values (n0-high to n0-low), for which the SESR effect is
possible for different γ0-values.

We recall that the parameter µ (used in the linearizing procedure applied to the Lorentz force
equation (3)) equals (β0n0 − 1), and that the assumption µ � 1 also needs to be satisfied
for our theory to remain applicable. Therefore, the up-shift can be extremely high if we are
able to choose the appropriate material for which the condition for the electron’s superphase
motion is just satisfied. The values of the parameters β0 and n0 need to be controlled so nicely
that the superphase motion continues to be very near to its threshold.

Thus the laser frequency, electron speed (energy) and refractive index of the material are
the three controlling parameters available to obtain the desired frequency output by SESR. In
order to know how to choose their values, we calculate them by taking a range of µ-values
within which our approximations remain valid. We consider the range of µ-values from 10−6

to 10−3, which gives the frequency up-shift in the range of 107–103. From equation (19),
the actual values of the SESR frequencies are given approximately as 4ω0

µ
and 8ω0

µ
, because

β0n0 ∼ 1 and �0 ∼ 2ω0. As µ = β0n0 − 1, for different values of electron beam energy
(γ0), we calculate the refractive index (n0) that is required for a given µ. In figures 1(a), (b)
and (c), we show the allowed ranges (n0-high to n0-low) within which the values of n0 need
to be chosen for different values of γ0 obtained by considering the values of µ = 10−3 and µ

= 10−6 to get the predicted SESR effect.
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Figure 2. The electric field components (ρ, φ and z) of the emitted radiation due to the SESR
effect (2�, 4� and CR-like) for γ0 = 18.29, E0 = 3 × 105 StatV cm−1, ω0 = 5 × 1015 Hz and
n0 = 1.0025 (for µ = 1 × 10−3).

Looking at their values from figures 1(a) and (b), we can say that for high-energy electron
beams (γ0 > ∼10) gaseous media need to be chosen. Solids (such as polyethylene) may
be chosen only for lower electron beam energies (γ0 < ∼5) as shown in figure 1(c). The
choice of an appropriate material that makes the required superluminal motion possible (by
remaining very near to the threshold of superphase motion) for available high energy electron
beams is an important issue, and it needs to be investigated further for practical applications
of the SESR-effect.

We note that the choice of the laser frequency ω0 decides the lower limit of the frequency
output. If we choose ω0 in IR, the frequency of SESE-2� will be in the x-ray or gamma-ray
region. In principle, frequency up-shift can be as high as 107 (or even more, if we are able
to choose smaller µ), but in practice dispersive properties of the medium may put a lower
limit to how close we can approach to the threshold value and be able to maintain the required
conditions. We need to know the response of the dielectric for the incident laser frequency
ω0, and also the output frequencies 2� and 4�. We proceed to estimate the field amplitudes
of SESR.

3.2. Field strength

Here, we calculate the values of the field components of SESR and compare them with the
earlier ones. We show the results graphically for easy comparison.

Using the results specified by equations (24)–(26), we calculate the electric field
components of SESR for γ0 = 18.29, E0 = 3 × 105 StatV cm−1, ω0 = 5 × 1015 Hz and n0

= 1.0025 (for µ = 1 × 10−3) and denote them in figure 2 by ‘new’; while the corresponding
components calculated in our earlier work [7] we show by ‘old’. We express all the field
components in units of (e/2c2) = 2.6721 × 10−31 StatV cm−1.

We note from figure 2 that for SESR-2�, ρ and z are the two dominant field components,
while for SESR-4� only the z-component is dominant and that the SESR effect is very large
as compared to CR-like SESR. In units of e/2c2 the field strength of CR-like SESR is seen
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Figure 3. The ρ-, φ- and z-components of Poynting’s vector S = c
4π

(E × H), in units of
c

4π
( e

2c2 ) = 1.7035×10−52 ergs (s cm)−2, for γ0 = 18.29, n0 = 1.0025, E0 = 3×105 StatV cm−1,

ω0 = 5 × 1015 Hz.

to be ∼102–103 while the remaining (new) SESR components lie within the range of 1014–
1025. We also see from figure 2 that there is a considerable enhancement ∼11–12 orders
of magnitude in new φ-components. But it is of no significance because the φ-components
are negligibly small in comparison with the corresponding ρ- and z-components The ‘new’
ρ- and z-components of SESR-2� are almost the same as their ‘old’ values. For SESR-4�,
the ρ-component increases by four orders and the z-component increases by three orders of
magnitude. Thus, the present refined calculations show a large increase in SESR-4�, while
almost no change in SESR-2�.

3.3. Power output

In order to estimate the radiated energy output, we calculate the Poynting’s vector S =
c

4π
(E × H), where H = (k̂ × E)n0, and E is given by equations (24)–(26). We assume

that the parameters are the same as taken in figure 2, e.g., γ0 = 18.29, n0 = 1.0025, E0 =
3 × 105 StatV cm−1 and ω0 = 5 × 1015 Hz. Hence, using the values of the field components
(new) from figure 2, we evaluate the components of the Poynting’s vector and show them in
figure 3.

Figure 3 clearly shows the hugeness (in comparison with the CR-like SESR) of the effect
of SESR-2� and also of SESR-4�. As compared to CR-like SESR (which is < ∼CR given out
in the absence of the laser), the power output per unit area from SESR-4� is 1029–1039 times
larger and that from SESR-2� is 1044 times larger. The SESR-2� dominates considerably
over SESR-4� by giving 5–15 orders of magnitude more power output per unit area. We
note that the Sφ component is negligibly small as compared to the Sρ and Sz components for
SESR-2�. For SESR-4�, the component Sρ dominates over the remaining two.

By considering the Gaussian cylinder of unit length and unit radius of cross-section with
its axis coincident with the direction of the electron’s motion, we calculate S, the power emitted
in Gaussian units, as

S = (2πSρ + πSz) × 1.7035 × 10−52 ergs (s cm)−2.
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For the present situation specified in figure 3, the power emitted through SESR is calculated
as (S)CR-like ∼ 4.64 × 10−44 erg s−1, (S)2� ∼ 3.52 erg s−1 and (S)4� ∼ 1.84 × 10−6 erg s−1.
It shows that (S)2� 	 (S)4� 	 (S)CR-like.

Here we note that the interaction of the electron possessing superphase motion with the
counter-propagating laser gives rise to the SESR effect. As the laser considered in the example
is pulsed, its pulse duration decides the time of the interaction. It may be in the range of micro-
to pico-seconds, and so the electron energy considered in the above example (i.e. γ0 = 18.29
which corresponds to 1.5 × 10−5 erg) can be seen to be quite sufficient to give such a large
SESR-2� output (which may be in the range from 10−6 to 10−12 ergs per pulse).

3.4. Tunability

It may be possible to get variable output due to SESR (in terms of its frequency and intensity)
by changing the external parameters such as electron energy (β0, γ0), laser frequency (ω0),
laser intensity (E0) and refractive index (n0) of the material. These four parameters provide
a characteristic of ‘tunability’ to the SESR effect. Therefore, it is necessary to know the
variation of the SESR w.r.t. these parameters.

In our earlier work [7] the variation of the SESR effect w.r.t. β0, E0, ω0 and n0 was studied
separately in detail, and the conclusions drawn therein remain applicable for the present refined
calculations also. As γ0 is a preferred electron energy parameter, we study the variation of the
SESR-effect w.r.t. it here. We also find the allowed electron beam energy ranges for different
n0-values.

The field amplitudes of the dominant components of SESR-2� are decided by the factors
α18 and α13. It may be seen that α13 is independent of γ 0, while α18 varies inversely w.r.t.
γ 0. It implies that the SESR effect increases when electron energy is decreased (within the
allowed range). It also is a very useful result because then the requirement to use higher
and higher energy electron beams to get larger and larger outputs (in terms of frequency and
power both) is not going to act as a limitation when SESR is used for that purpose. In all the
existing radiation sources the electron beam energy needs to be increased as one wants to get
the radiation of higher and higher frequency.

We note that the choice of the laser parameters E0 and ω0 should be such that βi � 1
is satisfied. For a given dielectric n0 is specified. By choosing µ (�1) we find the required
value of β0 (satisfying β0n0 > 1) because µ = (β0n0 − 1). To estimate the SESR effect
(specified by equations (19), (24)–(26)), we have considered the range of µ as (1 × 10−8–
1 × 10−2), and have taken the n0-values in the range of 1.000 0025–6, E0-values in the range
from 3 to 3 × 107 StatV cm−1 and ω0-values in the range of 5 × 107–5 × 1016 Hz. We have
included those values of E0 and ω0 which satisfy βi � 10−2. We show in figures 4(a) and
(b) the maximum allowed electron beam energy values, (Eb)max (= 0.511 × γ0 MeV), for
different n0-values which give the expected SESR effect along with the corresponding energy
range �Eb in MeV. For a given value of n0, the electron beam is expected to show the SESR
effect in the range from (Eb)max to [(Eb)max −�Eb]. This range can be found from figures 4(a)
and (b).

Thus, with the refined second-order calculations, we have shown that SESR is given out
in the form of two components of frequency 2� and 4� which we named, respectively, as
SESR-2� and SESR 4�. The SESR-2� is stronger than the SESR-4� and gives power
output ∼106 times that from SESR-4�. Each of these components is monochromatic, largely
up-shifted w.r.t. laser frequency ω0

(
103 < �

ω0
< 107

)
, highly directional w.r.t. the direction

of electron’s motion (with θ = tan−1(1 − 1
β0n0

) → 0), enormously amplified with power

amplification ∼1027–1044 times that from the normal Cherenkov radiation (that may be given
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Figure 4. The maximum electron beam energy values (Eb)max and the corresponding widths �Eb ,
both expressed in MeV, for which the SESR effect is possible for different n0-values.

out in the absence of the laser, but under the same other conditions), coherent electromagnetic
radiation which is also tunable.

All these interesting characteristics of SESR indicate a possibility of using it for the
generation of high frequency, coherent electromagnetic radiation in the frequency region in
which good sources, at present, are not available.

4. Conclusions

By using the classical, second-order, relativistic calculations, we have shown that very near
to the threshold of superphase motion SESR is given out in the form of two monochromatic
components of electromagnetic radiation showing the following characteristics:
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(A) Frequency output. SESR-2� gives frequency 2� ∼ 4ω0
β0n0−1 , and SESR4� gives frequency

4� ∼ 8ω0
β0n0−1 . As compared to the incident laser, their frequency up-shifts can be very

high, in the range of 103–109.
(B) Directionality. Both the components, SESR-2� and SESR-4�, are highly directional.

Their emission is confined to the cone of half angle θ = tan−1
(
1 − 1

β0n0

) → 0, w.r.t. the
direction of the electron’s motion.

(C) Power output. SESR-2� is stronger as compared to SESR-4� giving output power ∼106

times more. It is enormously amplified with power amplification ∼1044 times larger
compared to CR-like SESR and also to normal CR (that may be given out in absence of
the laser, with the other conditions remaining unchanged).

(D) Tunability. SESR is tunable. The tunability is provided by the parameters ω0 of the laser,
γ0 of the electron beam and n0 of the material. SESR shows an increase with increasing
E0 and n0, while it shows a decrease with increasing γ0 and ω0. However, the output
power of SESR-2� is independent of ω0.

Nevertheless, the SESR effect needs to be further investigated by considering the practical
limitations for achieving the parameters taken as ‘ideal’ in our theory. The questions such as
energy conservation, the SESR energy source (electron beam, medium or both) are required to
be studied further in detail. The work in these directions is in progress and may be published
elsewhere. At the same time the experimental work for its verification is very much required
for further progress in this subject.
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